organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Phenyl N-(p-tolyl)carbamate

Shu-Xin Bao,^a Zheng Fang,^a* Yong-Lu Wang^a and Ping Wei^b

^aSchool of Pharmaceutical Sciences, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and ^bCollege of Life Sciences and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China Correspondence e-mail: fzcpu@163.com

Received 11 June 2009; accepted 12 June 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.004 Å; R factor = 0.054; wR factor = 0.172; data-to-parameter ratio = 14.4.

The asymmetric unit of the title compound, C₁₄H₁₃NO₂, contains two crystallographically independent molecules, in which the aromatic rings are oriented at dihedral angles of 59.01 (3) and 56.98 (3)°. In the crystal structure, intermolecular N-H···O hydrogen bonds link the molecules into chains.

Related literature

For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

$C_{14}H_{13}NO_2$	$\alpha = 87.30 \ (3)^{\circ}$
$M_r = 227.25$	$\beta = 77.07 \ (3)^{\circ}$
Triclinic, P1	$\gamma = 75.00 \ (3)^{\circ}$
a = 8.7790 (18) Å	V = 1218.0 (5) Å ³
b = 9.7470 (19)Å	Z = 4
c = 15.121 (3) Å	Mo $K\alpha$ radiation

$\mu = 0.08 \text{ mm}^{-1}$ T = 294 K	$0.30 \times 0.20 \times 0.10 \text{ mm}$
Data collection	
Enraf–Nonius CAD-4 diffractometer Absorption correction: ψ scan (North <i>et al.</i> , 1968) $T_{\rm min} = 0.975, T_{\rm max} = 0.992$ 4736 measured reflections	4421 independent reflections 2781 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ 3 standard reflections frequency: 120 min intensity decay: 1%
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.172$ S = 1.01 4421 reflections	308 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.22 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.13 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$

0.86

 $N1 - H1A \cdots O3$ $N2 - H2A \cdots O2^{i}$ 0.86 2.28 Symmetry code: (i) x, y + 1, z.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.

2.13

 $D - H \cdot \cdot \cdot A$

168

152

2.972 (3)

3.061(2)

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2710).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2009). E65, 01606 [doi:10.1107/S1600536809022600]

Phenyl N-(p-tolyl)carbamate

S.-X. Bao, Z. Fang, Y.-L. Wang and P. Wei

Comment

Some derivatives of benzoic acid are important chemical materials. We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound contains two crystallographically independent molecules (Fig. 1), in which the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Rings A (C2-C7), B (C9-C14) and C (C16-C21), D (C23-C28) are, of course, planar and the dihedral angles between them are A/B = 59.01 (3)° and C/D = 56.98 (3)°. Intramolecular N-H···O hydrogen bond (Table 1) links the two molecules (Fig. 1).

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, to a cold stirring solution of p-toluidine (1.0 g) and triethylamine (0.8 ml) in methylene chloride (10 ml) was added phenyl chloroformate (1.0 ml) slowly keeping the temperature at 273 K. The mixture was then warmed and stirred for 1 h at room temperature. The mixture was washed with water (20 ml), dried over sodium sulfate, and concentrated to near dryness. The crude product was purified by recrystallization from petroleum ether (yield; 1.3 g). Crystals suitable for X-ray analysis were obtained by slow evaporation of a petroleum ether solution.

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,N)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.

Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Phenyl N-(p-tolyl)carbamate

Crystal data	
C ₁₄ H ₁₃ NO ₂	Z = 4
$M_r = 227.25$	$F_{000} = 480$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.239 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 8.7790 (18) Å	Cell parameters from 25 reflections
b = 9.7470 (19) Å	$\theta = 9-13^{\circ}$
c = 15.121 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\alpha = 87.30 \ (3)^{\circ}$	T = 294 K
$\beta = 77.07 \ (3)^{\circ}$	Block, colorless
$\gamma = 75.00 \ (3)^{\circ}$	$0.30 \times 0.20 \times 0.10 \text{ mm}$
$V = 1218.0 (5) \text{ Å}^3$	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\text{int}} = 0.027$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.3^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.4^{\circ}$
T = 294 K	$h = 0 \rightarrow 10$
$\omega/2\theta$ scans	$k = -11 \rightarrow 11$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = -17 \rightarrow 18$
$T_{\min} = 0.975, T_{\max} = 0.992$	3 standard reflections
4736 measured reflections	every 120 min
4421 independent reflections	intensity decay: 1%
2781 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained

$R[F^2 > 2\sigma(F^2)] = 0.054$	$w = 1/[\sigma^2(F_o^2) + (0.097P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.172$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.01	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
4421 reflections	$\Delta \rho_{min} = -0.13 \text{ e } \text{\AA}^{-3}$
308 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.040 (5)
Secondary atom site location: difference Fourier map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and	isotropic or equi	ivalent isotropic disp	placement parameters	$(Å^2$)
	1 1	1 1	1	۰ ×	/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.2677 (3)	0.48473 (18)	0.79602 (12)	0.0801 (6)
O2	0.2281 (2)	0.27924 (16)	0.86169 (11)	0.0605 (5)
03	0.2572 (2)	0.76205 (16)	0.89540 (11)	0.0675 (5)
O4	0.2965 (2)	0.94932 (16)	0.96266 (10)	0.0593 (5)
N1	0.2453 (3)	0.4652 (2)	0.94342 (13)	0.0641 (6)
H1A	0.2456	0.5534	0.9383	0.077*
N2	0.2903 (2)	0.96349 (19)	0.81800 (12)	0.0537 (5)
H2A	0.3101	1.0436	0.8255	0.064*
C1	0.2787 (4)	0.2204 (4)	1.2922 (2)	0.1085 (12)
H1B	0.3382	0.2673	1.3213	0.163*
H1C	0.3329	0.1212	1.2845	0.163*
H1D	0.1718	0.2311	1.3290	0.163*
C2	0.2677 (4)	0.2855 (3)	1.20065 (18)	0.0701 (8)
C3	0.3342 (3)	0.3980 (3)	1.16953 (19)	0.0750 (8)
НЗА	0.3871	0.4341	1.2061	0.090*
C4	0.3240 (3)	0.4578 (3)	1.08582 (17)	0.0649 (7)
H4A	0.3684	0.5340	1.0670	0.078*
C5	0.2476 (3)	0.4040 (2)	1.02999 (16)	0.0543 (6)
C6	0.1754 (3)	0.2940 (3)	1.06131 (17)	0.0677 (7)
H6A	0.1191	0.2597	1.0259	0.081*
C7	0.1882 (4)	0.2367 (3)	1.14483 (18)	0.0728 (8)
H7A	0.1413	0.1622	1.1645	0.087*
C8	0.2428 (3)	0.3982 (2)	0.86860 (16)	0.0552 (6)

C9	0.2452 (4)	0.4455 (2)	0.71360 (17)	0.0592 (7)
C10	0.0941 (4)	0.4490 (3)	0.7028 (2)	0.0736 (8)
H10A	0.0059	0.4701	0.7518	0.088*
C11	0.0741 (5)	0.4207 (3)	0.6182 (3)	0.0944 (10)
H11A	-0.0279	0.4216	0.6098	0.113*
C12	0.2045 (6)	0.3912 (3)	0.5469 (2)	0.0998 (12)
H12A	0.1902	0.3734	0.4899	0.120*
C13	0.3554 (5)	0.3876 (3)	0.5580 (2)	0.0927 (10)
H13A	0.4439	0.3659	0.5092	0.111*
C14	0.3751 (4)	0.4166 (3)	0.6428 (2)	0.0744 (8)
H14A	0.4769	0.4164	0.6513	0.089*
C15	0.2199 (4)	0.8740 (3)	0.45921 (18)	0.0983 (11)
H15A	0.1840	0.7895	0.4568	0.148*
H15B	0.3217	0.8649	0.4171	0.148*
H15C	0.1416	0.9544	0.4434	0.148*
C16	0.2396 (3)	0.8946 (3)	0.55416 (17)	0.0683 (8)
C17	0.2895 (4)	1.0104 (3)	0.57645 (18)	0.0785 (9)
H17A	0.3120	1.0758	0.5318	0.094*
C18	0.3062 (3)	1.0305 (3)	0.66276 (17)	0.0681 (8)
H18A	0.3396	1.1090	0.6756	0.082*
C19	0.2739 (3)	0.9354 (2)	0.73064 (15)	0.0495 (6)
C20	0.2257 (4)	0.8183 (3)	0.70921 (17)	0.0675 (7)
H20A	0.2045	0.7521	0.7535	0.081*
C21	0.2095 (4)	0.8008 (3)	0.62212 (18)	0.0751 (8)
H21A	0.1769	0.7220	0.6090	0.090*
C22	0.2787 (3)	0.8796 (2)	0.89110 (15)	0.0483 (6)
C23	0.2708 (3)	0.8880 (2)	1.04888 (15)	0.0481 (6)
C24	0.3933 (3)	0.8655 (3)	1.09414 (17)	0.0587 (7)
H24A	0.4928	0.8812	1.0660	0.070*
C25	0.3663 (3)	0.8190 (3)	1.18239 (17)	0.0662 (7)
H25A	0.4482	0.8031	1.2143	0.079*
C26	0.2183 (3)	0.7959 (3)	1.22356 (17)	0.0677 (8)
H26A	0.2004	0.7656	1.2834	0.081*
C27	0.0979 (3)	0.8173 (3)	1.17687 (17)	0.0632 (7)
H27A	-0.0010	0.7998	1.2046	0.076*
C28	0.1224 (3)	0.8648 (2)	1.08853 (16)	0.0543 (6)
H28A	0.0405	0.8808	1.0566	0.065*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.1460 (19)	0.0512 (11)	0.0592 (11)	-0.0492 (12)	-0.0287 (11)	0.0079 (9)
O2	0.0878 (13)	0.0380 (9)	0.0662 (11)	-0.0274 (8)	-0.0262 (9)	0.0036 (8)
O3	0.1163 (15)	0.0379 (9)	0.0578 (10)	-0.0340 (9)	-0.0233 (10)	0.0068 (8)
O4	0.0911 (13)	0.0498 (9)	0.0516 (10)	-0.0397 (9)	-0.0221 (9)	0.0072 (8)
N1	0.1033 (17)	0.0368 (10)	0.0604 (13)	-0.0304 (11)	-0.0202 (12)	0.0007 (9)
N2	0.0792 (14)	0.0374 (10)	0.0520 (11)	-0.0288 (10)	-0.0149 (10)	0.0062 (9)
C1	0.124 (3)	0.111 (3)	0.068 (2)	0.001 (2)	-0.014 (2)	0.0120 (19)

C2	0.0782 (19)	0.0606 (17)	0.0556 (16)	0.0035 (15)	-0.0058 (14)	-0.0036 (13)
C3	0.0718 (19)	0.092 (2)	0.0628 (17)	-0.0202 (16)	-0.0164 (14)	-0.0093 (16)
C4	0.0734 (18)	0.0625 (17)	0.0647 (17)	-0.0305 (14)	-0.0102 (14)	-0.0079 (13)
C5	0.0695 (16)	0.0394 (13)	0.0518 (14)	-0.0140 (11)	-0.0081 (12)	-0.0026 (11)
C6	0.098 (2)	0.0527 (15)	0.0593 (16)	-0.0330 (15)	-0.0154 (15)	-0.0012 (12)
C7	0.104 (2)	0.0464 (15)	0.0622 (17)	-0.0221 (15)	-0.0031 (16)	0.0012 (13)
C8	0.0731 (17)	0.0375 (13)	0.0597 (15)	-0.0221 (12)	-0.0157 (13)	0.0058 (11)
С9	0.085 (2)	0.0373 (13)	0.0572 (16)	-0.0205 (13)	-0.0161 (14)	0.0082 (11)
C10	0.083 (2)	0.0533 (16)	0.082 (2)	-0.0169 (15)	-0.0160 (17)	0.0110 (14)
C11	0.116 (3)	0.078 (2)	0.108 (3)	-0.034 (2)	-0.057 (2)	0.025 (2)
C12	0.178 (4)	0.068 (2)	0.067 (2)	-0.037 (2)	-0.049 (3)	0.0109 (17)
C13	0.122 (3)	0.073 (2)	0.068 (2)	-0.020 (2)	0.003 (2)	0.0026 (16)
C14	0.082 (2)	0.0612 (17)	0.078 (2)	-0.0220 (15)	-0.0114 (17)	0.0098 (15)
C15	0.145 (3)	0.087 (2)	0.0587 (18)	-0.012 (2)	-0.0344 (19)	-0.0033 (16)
C16	0.089 (2)	0.0528 (16)	0.0532 (15)	-0.0030 (14)	-0.0119 (14)	-0.0038 (12)
C17	0.118 (3)	0.0602 (17)	0.0537 (16)	-0.0259 (17)	-0.0112 (16)	0.0120 (13)
C18	0.101 (2)	0.0509 (15)	0.0568 (16)	-0.0327 (15)	-0.0123 (14)	0.0076 (12)
C19	0.0624 (15)	0.0360 (12)	0.0486 (13)	-0.0127 (11)	-0.0089 (11)	-0.0003 (10)
C20	0.108 (2)	0.0471 (14)	0.0579 (16)	-0.0333 (15)	-0.0255 (15)	0.0080 (12)
C21	0.122 (3)	0.0504 (15)	0.0629 (17)	-0.0303 (16)	-0.0309 (16)	0.0019 (13)
C22	0.0600 (15)	0.0367 (12)	0.0510 (13)	-0.0179 (11)	-0.0113 (11)	-0.0010 (10)
C23	0.0665 (16)	0.0354 (12)	0.0480 (13)	-0.0194 (11)	-0.0163 (12)	-0.0001 (10)
C24	0.0585 (16)	0.0569 (15)	0.0679 (17)	-0.0249 (12)	-0.0173 (13)	0.0042 (12)
C25	0.0712 (18)	0.0742 (18)	0.0652 (17)	-0.0273 (15)	-0.0311 (14)	0.0094 (14)
C26	0.089 (2)	0.0717 (18)	0.0483 (15)	-0.0304 (16)	-0.0177 (14)	0.0076 (13)
C27	0.0618 (17)	0.0673 (17)	0.0601 (16)	-0.0225 (13)	-0.0063 (13)	0.0052 (13)
C28	0.0555 (15)	0.0538 (14)	0.0587 (15)	-0.0194 (12)	-0.0176 (12)	0.0039 (11)

Geometric parameters (Å, °)

O1—C8	1.366 (3)	C11—H11A	0.9300
O1—C9	1.390 (3)	C12—C13	1.363 (5)
O2—C8	1.211 (3)	C12—H12A	0.9300
O3—C22	1.205 (3)	C13—C14	1.384 (4)
O4—C22	1.363 (3)	C13—H13A	0.9300
O4—C23	1.404 (3)	C14—H14A	0.9300
N1—C5	1.415 (3)	C15—C16	1.512 (3)
N1—C8	1.340 (3)	C15—H15A	0.9600
N1—H1A	0.8600	C15—H15B	0.9600
N2-C19	1.407 (3)	C15—H15C	0.9600
N2	1.345 (3)	C16—C21	1.370 (4)
N2—H2A	0.8600	C16—C17	1.392 (4)
C1—C2	1.508 (4)	C17—C18	1.374 (4)
C1—H1B	0.9600	C17—H17A	0.9300
C1—H1C	0.9600	C18—C19	1.381 (3)
C1—H1D	0.9600	C18—H18A	0.9300
C2—C7	1.378 (4)	C19—C20	1.390 (3)
C2—C3	1.387 (4)	C20—C21	1.379 (3)
C3—C4	1.380 (4)	C20—H20A	0.9300

С3—НЗА	0.9300	C21—H21A	0.9300
C4—C5	1.383 (3)	C23—C24	1.366 (3)
C4—H4A	0.9300	C23—C28	1.377 (3)
C5—C6	1.395 (3)	C24—C25	1.378 (3)
C6—C7	1.372 (3)	C24—H24A	0.9300
С6—Н6А	0.9300	C25—C26	1.380 (4)
С7—Н7А	0.9300	C25—H25A	0.9300
C9—C14	1.357 (4)	C26—C27	1.366 (3)
C9—C10	1.364 (4)	C26—H26A	0.9300
C10-C11	1.379 (4)	C27—C28	1.382 (3)
C10—H10A	0.9300	С27—Н27А	0.9300
C11—C12	1.365 (5)	C28—H28A	0.9300
C8—O1—C9	118.14 (18)	C14—C13—H13A	120.5
C22—O4—C23	118.29 (16)	C9—C14—C13	119.7 (3)
C5—N1—H1A	117.0	C9—C14—H14A	120.2
C8—N1—C5	125.91 (19)	C13—C14—H14A	120.2
C8—N1—H1A	117.0	C16—C15—H15A	109.5
C19—N2—H2A	116.2	C16—C15—H15B	109.5
C22—N2—C19	127.53 (18)	H15A—C15—H15B	109.5
C22—N2—H2A	116.2	C16—C15—H15C	109.5
C2—C1—H1B	109.5	H15A—C15—H15C	109.5
C2—C1—H1C	109.5	H15B—C15—H15C	109.5
H1B—C1—H1C	109.5	C21—C16—C17	116.9 (2)
C2—C1—H1D	109.5	C21—C16—C15	121.9 (3)
H1B—C1—H1D	109.5	C17—C16—C15	121.3 (3)
H1C—C1—H1D	109.5	C18—C17—C16	121.6 (2)
C7—C2—C3	117.1 (3)	C18—C17—H17A	119.2
C7—C2—C1	121.0 (3)	C16—C17—H17A	119.2
C3—C2—C1	121.9 (3)	C17—C18—C19	120.8 (2)
C4—C3—C2	121.9 (3)	C17—C18—H18A	119.6
С4—С3—НЗА	119.1	C19—C18—H18A	119.6
С2—С3—НЗА	119.1	C18—C19—C20	118.4 (2)
C3—C4—C5	119.8 (2)	C18—C19—N2	118.0 (2)
C3—C4—H4A	120.1	C20-C19-N2	123.7 (2)
С5—С4—Н4А	120.1	C21—C20—C19	119.8 (2)
C4—C5—C6	119.1 (2)	C21—C20—H20A	120.1
C4—C5—N1	117.9 (2)	C19—C20—H20A	120.1
C6—C5—N1	123.0 (2)	C16—C21—C20	122.7 (3)
C7—C6—C5	119.5 (3)	C16—C21—H21A	118.7
С7—С6—Н6А	120.3	C20-C21-H21A	118.7
С5—С6—Н6А	120.3	O3—C22—N2	127.6 (2)
C6—C7—C2	122.5 (3)	O3—C22—O4	124.0 (2)
С6—С7—Н7А	118.8	N2—C22—O4	108.47 (18)
С2—С7—Н7А	118.8	C24—C23—C28	122.0 (2)
O2—C8—N1	128.3 (2)	C24—C23—O4	117.1 (2)
O2—C8—O1	123.1 (2)	C28—C23—O4	120.6 (2)
N1—C8—O1	108.56 (19)	C23—C24—C25	118.6 (2)
C14—C9—C10	121.4 (3)	C23—C24—H24A	120.7
C14—C9—O1	117.9 (3)	C25—C24—H24A	120.7

C10—C9—O1	120.4 (3)		C24—C25—C26		120.3 (2)
C9—C10—C11	119.0 (3)		C24—C25—H25A		119.9
С9—С10—Н10А	120.5		C26—C25—H25A		119.9
C11—C10—H10A	120.5		C27—C26—C25		120.3 (2)
C12—C11—C10	119.8 (3)		C27—C26—H26A		119.9
C12—C11—H11A	120.1		С25—С26—Н26А		119.9
C10-C11-H11A	120.1		C26—C27—C28		120.2 (2)
C13—C12—C11	121.1 (3)		С26—С27—Н27А		119.9
C13—C12—H12A	119.5		С28—С27—Н27А		119.9
C11—C12—H12A	119.5		C23—C28—C27		118.5 (2)
C12—C13—C14	119.0 (3)		C23—C28—H28A		120.7
C12—C13—H13A	120.5		С27—С28—Н28А		120.7
C7—C2—C3—C4	-1.0 (4)		C21—C16—C17—C18		-0.7 (4)
C1—C2—C3—C4	-179.9 (3)		C15—C16—C17—C18		179.4 (3)
C2—C3—C4—C5	-0.9 (4)		C16—C17—C18—C19		0.1 (5)
C3—C4—C5—C6	2.9 (4)		C17—C18—C19—C20		0.6 (4)
C3—C4—C5—N1	-177.7 (2)		C17-C18-C19-N2		-178.8 (2)
C8—N1—C5—C4	149.9 (3)		C22—N2—C19—C18		-173.8 (2)
C8—N1—C5—C6	-30.8 (4)		C22—N2—C19—C20		6.8 (4)
C4—C5—C6—C7	-3.1 (4)		C18—C19—C20—C21		-0.8 (4)
N1—C5—C6—C7	177.6 (2)		N2-C19-C20-C21		178.6 (3)
C5—C6—C7—C2	1.2 (4)		C17—C16—C21—C20		0.5 (4)
C3—C2—C7—C6	0.8 (4)		C15—C16—C21—C20		-179.5 (3)
C1—C2—C7—C6	179.7 (3)		C19—C20—C21—C16		0.2 (5)
C5—N1—C8—O2	6.9 (4)		C19—N2—C22—O3		2.7 (4)
C5—N1—C8—O1	-170.2 (2)		C19—N2—C22—O4		-177.8 (2)
C9—O1—C8—O2	12.4 (4)		C23—O4—C22—O3		-7.4 (3)
C9—O1—C8—N1	-170.3 (2)		C23—O4—C22—N2		173.05 (18)
C8—O1—C9—C14	-116.7 (3)		C22—O4—C23—C24		124.8 (2)
C8—O1—C9—C10	69.1 (3)		C22—O4—C23—C28		-61.1 (3)
C14—C9—C10—C11	0.8 (4)		C28—C23—C24—C25		-0.4 (4)
O1—C9—C10—C11	174.8 (2)		O4—C23—C24—C25		173.5 (2)
C9—C10—C11—C12	-0.7 (4)		C23—C24—C25—C26		0.1 (4)
C10-C11-C12-C13	0.8 (5)		C24—C25—C26—C27		0.8 (4)
C11—C12—C13—C14	-1.1 (5)		C25—C26—C27—C28		-1.2 (4)
C10-C9-C14-C13	-1.1 (4)		C24—C23—C28—C27		0.0 (4)
O1—C9—C14—C13	-175.2 (2)		O4—C23—C28—C27		-173.8 (2)
C12—C13—C14—C9	1.2 (4)		C26—C27—C28—C23		0.8 (4)
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H···A

	D II	11 /1	D Λ	ν
N1—H1A····O3	0.86	2.13	2.972 (3)	168
N2—H2A····O2 ⁱ	0.86	2.28	3.061 (2)	152
Symmetry codes: (i) x , y +1, z .				

